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A B S T R A C T

Persistence barcode is a topological summary for persistent homology to exhibit topo-
logical features with different persistence. Persistence rank function (PRF), derived
from persistence barcode, organizes persistence Betti numbers in the form of an integer-
valued function. To obtain topological patterns of objects such as point clouds repre-
sented by finite-dimensional vectors for machine learning classification tasks, the vec-
torizing representations of barcodes is generated via decomposing PRF on a system of
Haar basis. Theoretically, the generated vectorizing representation is proved to have
1-Wasserstein stability. In practice, to reduce training time and achieve better results,
a technique of dimensionality reduction through out-of-sample mapping in supervised
manifold learning is used to generate a low-dimensional vector. Experiments demon-
strate that the representation is effective for capturing the topological patterns of data
sets. Moreover, the classification of porous structures has become an essential problem
in the fields such as material science in recent decades. The proposed method is suc-
cessfully applied to distinguish porous structures on a novel data set of porous models.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Persistent homology (PH) [1], an effective tool for obtain-2

ing topological features of spatial objects, has been used to dis-3

cover topological patterns of practical data in recent decades.4

Topological patterns can be understood as representations re-5

lated to topological invariants, such as connected components6

in zero-dimension, loops in one-dimension, and spatial voids in7

two-dimension. Patterns represented by topology and geome-8

try have been widely adopted in numerous studies, for instance,9

image processing [2], and network analysis [3]. Especially, in10

computer graphics, the topological features of PH are used to11

solve problems such as point cloud recognition [4], and surface12

reconstruction [5].13

∗Corresponding author:
e-mail: hwlin@zju.edu.cn (Hongwei Lin)

PH can be used to infer possible ‘shape’ of a point cloud in 14

Euclidean space. Assume that on each point, a ball with its cen- 15

ter to be the point and the initial radius to be zero is assigned. 16

As the radius of each ball increases, simplexes are determined 17

by the intersections of these balls, and a simplicial complex is 18

generated corresponding to the value of the radius. In this dy- 19

namical procedure, the homological invariants in different di- 20

mension appear (or are born) at a moment when the value of 21

the radius is b, and it might disappear (or die) when some high- 22

dimensional simplex appears at the value of d. Therefore, the 23

pair (b, d) is the life span of the topological invariants, and the 24

persistence is its lifetime d − b. One can obtain a set of these 25

pairs in each dimension. A persistence barcode [6, 7], shown in 26

Figure 1 as an instance, is ordered linear segments obtained by 27

embedding each pair into 2D Euclidean space. The endpoints 28

of each ‘bar’ represent the birth time bi and the death time di 29

of the topological invariant, respectively. And a persistence di- 30
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agram is another topological summary embedding the set into1

2D Euclidean space as points. Because the death time is always2

greater than the birth time, the points are above the diagonal. To3

measure the similarity of two barcodes or persistence diagrams,4

p-Wasserstein distance and the bottleneck distance are defined5

in [8]. Readers can refer to [9] for more details.6

In point cloud classification using topological features with7

machine learning (ML) tools, the problem is how to transform8

these persistence barcodes into representations compatible with9

ML tools. Persistence barcode does not satisfy the multifold10

requirements of practical applications in ML tasks such as clas-11

sification. It is because (1) ‘bars’ in a barcode are unordered,12

and the number of ‘bars’ is not fixed; (2) to compute the dis-13

tance between two barcodes is not straightforward. Therefore,14

to use topological features with ML tools, we need to identify a15

vectorizing representation of barcodes.16

The new representation of barcode should follow three prin-17

ciples: (1) the representation has an explainable meaning; (2)18

transformation should preserve the information which a bar-19

code contains, and (3) representation should be stable with re-20

spect to the metrics of barcode. The persistence rank func-21

tion (PRF), also known as persistence Betti number function22

[10][11], is an ideal alternative to match these principles. First,23

PRF is a bivariate and non-negative integer-valued function that24

summarizes persistence Betti numbers (ranks) [12]. And the25

PRF can be induced from barcode [13]. Second, no external26

information is introduced to generate PRF. Third, it is shown in27

Section 4 that PRF in L2 in the sense of a particular measure has28

1-Wasserstein stability in the condition of a small perturbation.29

Consequently, we propose a framework to represent a barcode30

as a stable finitely dimensional vector by vectorizing PRF.31

As an application of the framework for point cloud classifi-32

cation, the vectorizing representation is used to classify porous33

structures. Porous structure plays an important role in analyzing34

the function of nanomaterials in material science [14]. In recen-35

t decades, as the databases of porous materials create, such as36

the database in the material genome initiative [15], the classi-37

fication of porous materials has become a novel and important38

problem. However, it is shown in [16] that traditional geomet-39

ric descriptors do not encode enough topological information40

to detect materials that have similar global porous structures.41

Therefore, persistent homology is adopted to capture the overall42

porous features for quantifying similarity of nanoporous mate-43

rials. Inspired by this, we generate a data set of porous models44

with category labels designed by triply periodic minimal sur-45

faces (TPMSs). On this data set, we extend the framework of46

vectorizing barcode with the technique of dimensionality reduc-47

tion via out-of-sample mapping in supervised manifold learning48

to speed up the training process of classifiers while maintaining49

or even improving the classification accuracy.50

Our contribution: In this paper, to vectorize persistence bar-51

codes for ML classification tasks of spatial point clouds using52

topological features, we propose a finitely dimensional vector-53

izing representation of barcodes based on Haar basis decompo-54

sition of PRF in L2 space with a limited domain, shown in Fig-55

ure 1. Theoretically, the generated vectorizing representation is56

proved to be stable with respect to the 1-Wasserstein distance57

in the condition of a small perturbation. For practical classi- 58

fication tasks, because of the relatively high dimension of the 59

generated vector, a technique of dimensionality reduction via 60

out-of-sample mapping in supervised manifold learning is em- 61

ployed to extend the vectorization framework. On a novel data 62

set of various porous materials, the proposed vectorizing repre- 63

sentation is applied to classify the models, and it has the best 64

performance compared with other vectorizing methods. 65

2. Related Work 66

In this section, the vectorizing representations of barcode and 67

persistence diagram for ML classification tasks are first intro- 68

duced. Then, because the proposed framework is applied to 69

classify the generated data set of porous structures, the genera- 70

tion approaches of 3D porous models are presented. 71

Vectorizing representations: From an historical perspec- 72

tive, size functions [17] were first used for the vectorization of 73

0-th homology, and the very first work about algebraic repre- 74

sentations of 0-th persistence diagrams is in [18]. The vectoriz- 75

ing representations of a barcode or persistence diagram can be 76

divided into non-learnable methods and kernel methods. There 77

are numerous non-learnable representations for practical prob- 78

lems [19, 20, 21, 22, 23, 24]. For example, persistence im- 79

ages were proposed in [25] based on the integral on each mesh 80

patch of a persistence surface, which is produced in the form of 81

summation of weighted Gaussian functions related to the per- 82

sistence of each point on a persistence diagram. To combine 83

PH with statistics, a topological summary, called persistence 84

landscapes, was proposed in [26]. This summary is a series 85

of functions in a separable Banach space so that the vector s- 86

pace structure can be used to do statistics, such as computing 87

mean values. Moreover, Robins et al. [13] considered PRF 88

in a Hilbert space and in an affine subspace under reasonable 89

conditions, and they performed functional principal componen- 90

t analysis on experimental data from colloids to study spatial 91

point patterns. 92

Kernel methods are motivated by searching meaningful mea- 93

surements to construct kernels used in machine learning model- 94

s. Persistence scale space kernel (PSSK) was proposed in [27] 95

as a multi-scale kernel by considering a heat diffusion problem. 96

PSSK was proved to be 1-Wasserstein stable, while it does not 97

have higher-degree Wasserstein stability. Kernel embedding of 98

measures was used in [28] to transform a persistence diagram 99

into an element of Hilbert space, and a framework of the k- 100

ernel method, persistence weighted Gaussian kernel (PWGK) 101

was developed. Meanwhile, the kernel was proved to be stable 102

with respect to Hausdorff distance. Additionally, another kernel 103

method was proposed in [29], referred to as sliced Wasserstein 104

kernel (SWK), for machine learning tasks using persistence di- 105

agrams. Readers can refer to the survey [30] for other recent 106

kernel methods. 107

Production of porous models: Cheah [31, 32] investigat- 108

ed and selected various polyhedral shapes suitable for porous 109

structure modeling and created a parametric library of porous 110

structures. Schroeder [33] introduced stochastic geometry theo- 111

ry into porous structure modeling to represent porous structures 112
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with density and porosity. Cai and Xi [34] proposed a porous1

structure modeling method based on a shape function and hexa-2

hedral mesh refinement. An approach of irregular porous struc-3

ture modeling based on subdivision and non-uniform rational4

B-splines was developed in [35]. You et al.[36] presented an im-5

proved method based on centroidal Voronoi tessellation and B-6

splines to design porous structures. To overcome the limitation7

in geometry of pore-making element, easily control the porosity8

and pore size, and ensure the internal connectivity, several re-9

searchers used TPMSs to design porous structures [37, 38, 39].10

With the appealing properties of connectivity, smoothness, and11

geometric representation, TPMS emerged as a significant tool12

for designing porous structures.13

3. Vectorization of Barcode14

In this section, we introduce the vectorizing method of bar-15

code based on PRF, as shown in Figure 1. First, the approach of16

inducing PRF from barcode and the Hilbert space where PRF is17

considered are summarized and introduced. Second, we present18

one of our contributions, that is, the method to generate the19

feature vector by decomposing PRF using Haar basis on the20

bounded domain. Finally, we mention that, because the feature21

vector possesses a relatively high dimension, for tasks of clas-22

sification, a layer of dimension reduction is provided based on23

out-of-sample mapping in supervised manifold learning. The24

approach we employed is introduced in Section 5.25
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Fig. 1. Pipeline of generating low-dimensional feature vectors from bar-
codes: (1) Barcodes are computed from a filtration built up on the objects;
(2) Extended persistence rank function (PRF) is induced from a barcode in
a certain dimension; (3) A finite number of Haar basis functions, of which
the first 16 functions are shown in the figure, are used to decompose the
extended PRF on a bounded domain; (4) A feature vector with a relatively
high dimension is generated by concatenating the coefficients of the Haar
basis functions into a vector; (5) A layer of dimensionality reduction is used
to produce low-dimensional vectors.

3.1. PRF and Functional Space26

In real data sets, the number of bars in a barcode is finite, and
most of the bars are distributed in a bounded domain. There-
fore, it is reasonable to consider PRF within a limited domain.
Given a kth persistence barcode {(bi, di) | 0 ≤ bi ≤ di, i ∈ I, |I| <
∞}, the kth PRF of a filtration V can be induced by the barcode
and is defined as:

rk,V (s, t) =
∑
i∈I

ri(s, t), (1)

where

ri(s, t) =

 1, bi ≤ s ≤ t ≤ di,

0, otherwise.
(2)

At the coordinate (s, t) where s ≤ t, the integer value is exact- 27

ly the persistence Betti number, which, intuitively, means the 28

number of k-dimensional ‘holes’ existing in the time interval 29

[s, t]. And the function in Equation (2) draws a right triangle 30

with its hypotenuse coincident with the diagonal. 31

We denote rk,V (s, t) as r(s, t) if no confusion occurs. The defi- 32

nition indicates that PRF is a non-negative integer-valued func- 33

tion, precisely, a piecewise constant valued function. Further, 34

PRF is defined on the domain R2
∆+

:= {(s, t) | 0 ≤ s ≤ t}, which 35

maps R2
∆+

into Z ∪ 0 ⊂ R. 36

To evaluate the distance between two PRFs, the space
L2(R2

∆+
, µ) is chosen here with standard inner product, where µ

is a measure. To make a PRF be an element of the Hilbert space
L2(R2

∆+
, µ), the measure µ is supposed to be carefully designed

because there may be an infinite homology feature [b,∞) in a
persistence barcode, which makes PRF not be finitely support-
ed in R2

∆+
. In [13], the measure µ can be obtained by a weighted

function φ(t−s), i.e., dµ = φ(t−s)dsdt, where t−s has the mean-
ing of persistence of a homology class. It is necessary to show
that PRFs are elements of L2(R2

∆+
, µ). For rk,V , rk,W generated

by filtrations V,W, respectively, suppose that V∞,W∞ are finite
simplicial complexes with Hk(V∞) = Hk(W∞), and it is proved
in [13] that ||rk,V − rk,W ||2 < ∞ if

∫ +∞

0 φ(x)dx < ∞. Simply, the
weighted function φ(s, t) in the measure µ can be chosen to be

φ(s, t) =

 1, 0 ≤ s, t ≤ B,

0, otherwise,
(3)

where B is a finite number such that the distance is considered 37

in the bounded domain Ω = [0, B]× [0, B]. The choice of B will 38

be discussed in Section 5. 39

Finally, to extend the domain of PRF from R2
∆+

to the domain
R2

+ = {(s, t) | s, t ≥ 0} to make the function decomposed by a
basis defined on R2

+, the extended PRF is defined by making
PRF be symmetric with respect to the diagonal, that is,

r̃k,V (s, t) =
∑
i∈I

r̃i(s, t), (4)

where

r̃i(s, t) =

 1, bi ≤ s, t ≤ di,

0, otherwise.
(5)

Intuitively, an example of extended PRF is given in Figure 1, 40

and it draws several square steps along the diagonal. The ex- 41

tended PRF does not introduce any extra information. In the 42

context, r̃k,V (s, t) is denoted as r̃(s, t) if no confusion occurs. 43

3.2. Vector Generation by Haar Decomposition 44

Here, we present the method to generate vectorizing repre- 45

sentations. To extract features of PRF with different scales, one 46

idea is to decompose a PRF on a system of basis that captures 47

both local and global characteristics. Note that extended PRF 48

has a structure of square steps along the diagonal because ex- 49

tended PRF is a piecewise constant-valued bivariant function. 50



4 / Computers & Graphics (2020)

This nature indicates an appropriate decomposition based on a1

system of non-continuous orthonormal basis, similar to Fouri-2

er decomposition. The system of Haar basis, a series of non-3

continuous orthonormal functions, is exactly a proper alterna-4

tive to transform a PRF into a vector consisting of the coeffi-5

cients of the basis.6

Haar basis is a complete orthonormal basis in L2[0, 1] [40].
The definition of the system of Haar functions is given as fol-
lows:

har0(0, t) = 1, 0 ≤ t ≤ 1,

harn(k, t) =



√
2n−1,

2k − 2
2n ≤ t <

2k − 1
2n ,

−
√

2n−1,
2k − 1

2n ≤ t ≤
2k
2n ,

0, otherwise,

(6)

where n = 1, 2, · · · , k = 1, 2, 3, · · · , 2n−1. The Haar basis can
be extended to 2D in the sense of tensor product. Without losing
generality, set Ω = [0, 1]2 and arrange an order on the Haar
functions so that {harn(k, t)}n,k is denoted as {hari(t)}i where i =

0, 1, 2, · · · ,N. The 2D Haar basis in the sense of tensor product
is given by

hari(s, t) = har j(s)hark(t), j, k = 1, 2, 3, · · · ,N. (7)

The 2D Haar system is a complete standard orthonormal ba-
sis on L2[0, 1]2. When n in Equation (6) is relatively small,
the corresponding Haar functions extract features with a large
scale. And the local features are extracted as n increases. When
n is large enough, subtle features can be captured. Therefore, it
is reasonable to approximate an extended PRF by a finite num-
ber of Haar basis functions denoted as {hari(s, t)}N

2

i=1 generated
sequentially by Equation (7). We truncate extended PRF in the
domain Ω, and normalize the domain to be [0, 1]2 so that ex-
tended PRF can be decomposed by Haar basis. The coefficients
λi are obtained by

λi = 〈̃r(s, t), hari(s, t)〉, i = 1, 2, · · · ,N2. (8)

And then, the coefficients λi are concatenated to be a vector in7

RN2
, i.e., v = (λ1, λ2, · · · , λN2 ), called the feature vector based8

on Haar basis decomposition. The algorithm to generate the9

feature vector from extended PRF is given in Algorithm 1. In10

the algorithm, the operator .∗ means to multiply each entry of11

a matrix with the corresponding entry of the other matrix. The12

double sum means to add up all entries of the computed matrix.13

The time complexity of the algorithm is O(22(n+N)+1), where n14

is given in Equation (6), and the interval [0, 1] is divided into15

2N shares. In practice, we set N = 8 (256 shares) and n = 516

(1024 basis functions) to fast compute the feature vector.17

Note that it is inevitable to lose some subtle information of a18

PRF, particularly the information close to the diagonal, because19

a limited number of Haar basis functions are used to decompose20

a PRF. Fortunately, this information does not represent promi-21

nent topological features.22

Practically, feature vectors are sparse vectors with a rather23

high dimension. It is because, intuitively, high-frequency in-24

formation is mainly concentrated near the diagonal, and a large25

Algorithm 1: Generation of the Feature Vector
Input: A barcode {bi, di}i∈I , the bound B, an integer n for

Haar basis functions, and an integer N to split [0, 1]
into 2N shares.

1. Generate the discrete extended PRF according to
Equation (4) and (5), truncate it in [0, B]2, and normalize
the domain to be [0, 1]2. The discrete extended PRF is
stored in the form of matrix with its size 2N × 2N , denoted
as z;
2. Generate 2n discrete 1D Haar basis functions according
to Equation (6), stored in a matrix har1D with its size
2n × 2N ;
Initiate v = zeros(22n, 1);
Initiate index = 1;
for i = 1 to 2n do

for j = 1 to 2n do
har2D = har1D(i, :)T ∗ har1D( j, :);

v(index) =
(

1
2N

)2
∗ sum (sum(har2D.*z)) ;

index = index + 1;
end

end
Output: The feature vector v.

number of high-frequency basis functions do not capture any 26

information. Before feeding data to classifiers, one can use 27

the technique of out-of-sample mapping in supervised manifold 28

learning to obtain low dimensional vectors such that the training 29

time is saved. Therefore, a layer of dimensionality reduction is 30

adopted in the classification framework exhibited in Section 5. 31

4. Theoretical Guarantee: Stability 32

In this section, we theoretically prove the stability of the gen- 33

erated vectorizing representation to tiny noise. Intuitively, the 34

core of the stability of the Haar feature vector shows that the 35

perturbation on the generated feature vector is corresponding- 36

ly small if the perturbation on the source data is small. Due 37

to the stability of barcode in [8], in some conditions, it shows 38

that perturbations on the vector can be controlled by those on 39

the barcode. In mathematical literature, for the norm of the d- 40

ifference between the original feature vector and the one with 41

perturbation, there is an upper bound given by a distance be- 42

tween the original barcode and the perturbed one. 43

4.1. Distance of Barcodes 44

To evaluate measure similarity between two barcodes, one of 45

alternative distance is p-Wasserstein distance, and the stability 46

result is also obtain under the Wasserstein distance for a reason- 47

ably large class of function in [9], which guarantees the robust- 48

ness of barcode in the presence of noise. Intuitively, to measure 49

the differences between two barcodes, which can be seen as the 50

sets of intervals, a matching is needed between them. There are 51

two cases for the intervals in a barcode: the matched intervals 52

and the others not being matched. 53
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Given two barcodes denoted as Bc, Bc
′

together with index
sets I, and I

′

, respectively, let li be the interval in a barcode, i.e.,
li := (bi, di) and the differences of matched and non-matched
intervals are given by

||li − l j||∞ := max{|bi − b j|, |di − d j|}, i ∈ I, j ∈ I
′

,

||li||∞ :=
di − bi

2
.

(9)

A matching ϕ is a binary relation between Bc and Bc
′

such that
any interval in Bc and Bc

′

matches at most one pair. A match-
ing can be seen as a subset of I × I

′

. Define M and M
′

to be the
index set of matched intervals in Bc and Bc

′

, respectively. The
p−Wasserstein distance Wp(Bc, Bc

′

) between the two barcodes
Bc and Bc

′

, which intuitively summarizes all the differences un-
der the matching that makes the differences minimal, is defined
as

inf
ϕ

∑i∈M

||li − l
′

ϕ(i)||
p
∞ +

∑
j∈I\M

||l j||
p
∞ +

∑
k∈I′ \M′

||l
′

k ||
p
∞


1/p

, (10)

where p is a positive real number.1

4.2. 1-Wasserstein Stability2

At the beginning of the proof of stability, some assumption-3

s are proposed: (1) the number of intervals (bi, di) is limited,4

i.e., |I| ≤ L where L is a positive integer; (2) the domain Ω is5

bounded, i.e., Ω = [0, B] × [0, B], where B is given by a finite6

constant; (3) the perturbation on the barcode is small.7

Given a barcode Bc, the corresponding PRF r(s, t) and fea-8

ture vector v ∈ RN×N , a small perturbation is exerted on the9

barcode to produce the barcode Bc
′

, PRF r
′

(s, t) and feature10

vector v
′

. The p-Wasserstein distance of Bc and Bc
′

is given11

by Wp(Bc, Bc
′

). Therefore, suppose that ϕ is the exact match-12

ing map which reaches the infimum of Wp(Bc, Bc
′

) in Equation13

(10). Because the perturbation is subtle according to assump-14

tion (3), that is, one can assume W1(Bc, Bc
′

) ≤ 1. The following15

theorem holds.16

Theorem 4.1. Given a barcode Bc and the corresponding per-
turbed barcode Bc

′

, r(s, t) and r
′

(s, t) are the PRFs in Lp(Ω),
respectively. If W1(Bc, Bc

′

) ≤ 1, then

‖r − r
′

‖
p
p ≤ 2(p−1)(2L−1)(2B + 1)W1(Bc, Bc

′

), (11)

where B < ∞ is given by the bounded domain Ω = [0, B] ×17

[0, B], and L is the largest number of intervals contained in a18

barcode.19

Proof. See Appendix.20

For extended PRF, there is a corollary from Theorem 4.1.21

Corollary 1. In the same conditions as Theorem 4.1 given,
r̃(s, t) and r̃

′

(s, t) are the extended PRFs in Lp(Ω). Then we
have

‖̃r − r̃
′

‖
p
p ≤ 2(p−1)(2L−1)+p(2B + 1)W1(Bc, Bc

′

), (12)

where the notations L and B follow Theorem 4.1.22

Proof. See Appendix.23

And then the 1-Wasserstein stability of the feature vector is 24

true by the following theorem. 25

Theorem 4.2 (Stability of Feature Vector). Given a barcode Bc
and the corresponding perturbed barcode Bc

′

, v and v
′

are the
feature vectors generated by decomposing the extended PRF-
s, produced by Bc and Bc

′

, on a finite series of Haar basis
{hari(s, t)}N

2

i=1, respectively. If W1(Bc, Bc
′

) ≤ 1, then

‖v − v
′

‖22 ≤ 22L+1(2B + 1)W1(Bc, Bc
′

), (13)

where B < ∞ is given by the bounded domain Ω = [0, B] × 26

[0, B], and L is the largest number of intervals contained in a 27

barcode. 28

Proof. See Appendix. 29

5. Experiments 30

In this section, we exhibit the technique of dimensionality 31

reduction (DR) through out-of-sample mapping in supervised 32

manifold learning practically used on data sets. And then, we 33

discuss the determination of some parameters in generating the 34

feature vectors, i.e., the bound B in Equation (3), and the appro- 35

priate dimension for the DR layer. Then classification experi- 36

ments were done in a data set of random images of Brownian 37

motion [41], which can be seen as scalar fields on the grid, a 38

data set of a 2D dynamical system [25] and nine time-series 39

data sets of multi-source signals [42], which are essentially the 40

point clouds embedded in Euclidean space. Accuracy on differ- 41

ent classifiers was obtained, and the performance of the feature 42

vectors was compared with state-of-the-art kernel methods and 43

persistence images (PIs). Finally, to clarify the effect of vec- 44

torizing process and the layer of DR, the ablation study was 45

conducted. In the experiments, the barcodes of Vietoris-Rips 46

filtration were computed via the Python package Ripser [43]. 47

And Python package dionysus 2 [44] was used to compute the 48

1-Wasserstein distance between two barcodes. 49

5.1. A Layer of Dimensionality Reduction 50

To reduce time of training classifiers and preserve or even im- 51

prove classification accuracy, a dimensionality reduction tech- 52

nique based on supervised manifold learning is adopted to deal 53

with high dimensional data. We employ the method proposed 54

in [45], which is multi-output kernel ridge regression for out- 55

of-sample mapping in supervised manifold learning. 56

Before choosing the DR method of out-of-sample mapping 57

in supervised manifold learning, we attempted commonly used 58

unsupervised DR methods, such as multidimensional scaling 59

[46], and unsupervised manifold learning methods, like isomet- 60

ric feature mapping [47], but found the classification accuracy 61

after DR dropped a lot, compared with that without DR. There- 62

fore, we attempted supervised DR method based on manifold 63

learning technique, kernel ridge regression for out-of-sample 64

mapping proposed in [45], in which the category labels are used 65

to improve the embedding of the training points. 66

The supervised approach of manifold learning utilizes the la- 67

bels of training data set to compute a projection of training data 68
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for the subsequent classification task. To increase inter-class1

dissimilarity and to decrease intra-class dissimilarity, a super-2

vised variant of Isomap based on a hierarchical agglomeration3

of the components is obtained from training labels. Further-4

more, to evaluate the classification accuracy of a classifier on5

a test data set, an out-of-sample embedding method based on6

multi-output kernel ridge regression is used, which projects the7

test data into the embedding space. Note that before classify-8

ing, the class labels of the test data remain hidden. More details9

are introduced in [45].10

5.2. Evaluation11

Determination of Parameters: In practice, the topological12

features of PH distribute in a bounded domain. PRF is con-13

sidered as an element in L2 space by choosing the weighted14

function φ(s, t) shown in Equation (3). Equivalently, PRF is15

limited in the domain Ω = [0, B]2. The problem arises to se-16

lect an appropriate bound value B in the classification tasks. A17

reasonable alternative to determine the bound B is to find the18

maximum of death indices of barcodes of training data, i.e.,19

B = max j∈train maxi∈I j (d
j
i ), and then to truncate bars with B20

in barcodes of test data. However, for few data sets in which21

a certain bar emerges with a relatively large death index, re-22

garded as an outlier, the bound B is computed unreasonably23

large, which may dilute detailed features that Haar basis can24

capture. To avoid this, one can roughly assume that the se-25

quence of birth and death indices follows a certain distribu-26

tion, such as a normal distribution or an exponential distribu-27

tion. Precisely, let x = (b1, d1, · · · , bi, di, · · · ) be a sequence. Fit28

the sequence x by a distribution ϕ(t), and B is determined by29

infy{y :
∫ y
−∞

ϕ(t)dt ≥ δ}, where δ is a constant in [0, 1]. In this30

way, one can obtain a reasonable value of bound B. Note that31

it is an alternative to determine a reasonable value of bound,32

not a rigorous assumption that the sequence follows the distri-33

bution. By observing experimental barcode data, we computed34

the bound value B using exponential distributions with δ = 0.9935

on a few data sets, and on most of data sets, B was determined36

by the maximum of death indices of barcodes. To test the ef-37

fect of the selection of bound B on classification accuracy, we38

changed the bound in the parameter interval [0.9B, B], where39

B was determined by the maximum of death indices , and the40

classification accuracy fluctuates in a small range, about 0.2%41

to 2.0%. If some of topological features are truncated, the clas-42

sification accuracy will be affected. And when the bound is set43

in the interval [B, 1.1B], then the classification accuracy has no44

significant change.45

Because feature vectors are sparse, the basic idea is to look46

for a dimension in which the information of the vectors can47

be preserved as much as possible. To determine the appropri-48

ate dimension before the process of dimensionality reduction,49

principal component analysis (PCA) based on singular value50

decomposition is used. Concretely, in the implementation of51

PCA, when singular value decomposition is performed on the52

covariance matrix, the eigenvalue matrix Λ is obtained. Pro-53

jection error which measures loss of information can be esti-54

mated by ε(k) = 1 −
∑k

i=1 λi∑n
j=1 λ j

, where {λi} is a sequence of eigen-55

values with descending order and k is the reduced dimension.56

Let σ be tolerance. The appropriate dimension kapp is given by 57

inf {k ∈ Z+ : ε(k) ≤ σ, k ≤ n}. With kapp as an estimated re- 58

duced dimension, the DR layer introduced in Section 5.1 maps 59

the labeled vectors to a low dimensional vector space. In our 60

experiments, σ was set to be 0.01. 61
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(a) Classification accuracy of low-dimensional feature vectors of PRF on classi-
fiers of kernel SVM, linear SVM, LR, and kNN, respectively.
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(b) The classification accuracy of feature vectors with and without DR on kernel
SVM classifier, and classification accuracy of PWGK, PSSK, SWK and PI, each
of which is adjusted to have the best performance.

Fig. 2. Classification accuracy on eleven data sets: The first nine data sets
are of time-series for multi-source signals [42]; the tenth data set is of ran-
dom images of Brownian motion [41], and the eleventh data set is of a 2D
dynamical system in [25].

Comparison: To evaluate the performance of feature vec- 62

tors for extracting topological patterns, classification tasks were 63

performed on eleven data sets. To verify that the vectors can 64

catch the topological patterns of data sets, state-of-the-art ker- 65

nel methods for persistence diagrams, including PWGK, PSSK, 66

and SWK, and PIs were used to compare with the feature vec- 67

tors. To obtain barcodes, the H0 barcode was computed based 68

on lower-star filtration of the scalar function on a data set of 69

random images. For a time series of multi-source signals, time- 70
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delay embedding in [48] was adopted to transform a time series1

into a point cloud in Euclidean space, such that Vietoris-Rips2

(V-R) filtration was generated to compute H1 barcodes. In the3

data set of a 2D dynamical system, V-R filtration with respect to4

the 2D Euclidean metric was produced to obtain H1 barcodes.5

In the pipeline of generating the feature vectors of PRF, 210
6

Haar basis functions are used to extract the coefficients, i.e.,7

n = 5 in Equation (6). Meanwhile, because the feature vectors8

are suitable to be applied on different classifiers, four classifier-9

s, consisting of k nearest neighbors (kNN), logistic regression10

(LR), kernel support vector machine (kernel SVM) and linear11

support vector machine (linear SVM), are used to form a layer12

for classifying the input feature vectors. The parameters of L-13

R are defaulted, while in kNN, linear SVM, and kernel SVM,14

the hyperparameters are selected by cross-validation to ensure15

the best performance. Furthermore, in the process of classifica-16

tion using kernel methods, the hyperparameters of kernels are17

adjusted to reach the best classification performance. For PIs,18

images are produced with their resolution 10×10 and Gaussian19

σ = 10−3.20

For the performance of feature vectors on the classifiers k-21

ernel SVM, linear SVM, LR, and kNN, the results are shown22

in Figure 2(a). The low dimensional feature vectors obtained23

by DR have good performance on the classifiers of kernel SVM24

for most of data sets (8 in 11), while LR and kNN may not dis-25

tinguish those low dimensional vectors well on some data sets.26

In Figure 2(b), the comparison results, i.e., the performance of27

the proposed vectorizing representations with and without DR28

on kernel SVM classifier, the performance of kernel methods29

for barcode (PWGK, PSSK, and SWK), and the performance30

of PIs are shown. On the time-series data sets Beef, CBF [42]31

and random images, the kernel methods perform best. PIs have32

the best classification result on the data set of 2D dynamical33

system. On the rest of data sets (7 in 11), feature vectors of34

PRF (without DR, shown in orange) perform the best. Overal-35

l, feature vectors can capture prominent topological features of36

data such that a nice performance is achieved on the classifiers.37

And, for the comparison of time cost of the proposed method38

and its competitors, it costs less time to produce feature vectors39

for classification than kernel methods. The proposed classifica-40

tion pipeline costs about 2 hours, but kernel methods cost about41

15 hours in total eleven data sets for all procedures. Techniques42

of parallel computing can be adopted to compute the vectors of43

a collection of data.44

Furthermore, we notice that on most of data sets, the perfor-45

mance of the feature vectors without DR on kernel SVM clas-46

sifier is better than that of the vectors with DR. To clarify the47

effect of DR layer in both aspects of classification accuracy on48

the rest of classifiers and the time cost of training classifiers49

with low and high-dimensional vectors, we do ablation study by50

removing the DR layer. Moreover, the entire framework will be51

ablated by using the distance matrix with respect to Wasserstein52

distance equipped on barcodes as the input of kNN classifier in53

order to show the effect of classification by using the proposed54

vectoring representations of barcodes.55
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Fig. 3. Classification results for ablation study on eleven data sets: classifi-
cation accuracies of using feature vectors with DR, feature vectors without
DR on LR and kNN classifiers, and a distance matrix of 1-Wasserstein dis-
tance on kNN classifier are illustrated.

5.3. Ablation Study 56

To investigate the effects of these two components in the pro- 57

cess, an ablation study was done. First, the layer of DR is ab- 58

lated to show its effectiveness for classifying data with different 59

labels. Then, the whole layer of vectorization is ablated to vali- 60

date the effectiveness of feature vectors for classification tasks. 61

The classification after ablation is implemented by kNN with 62

the distance matrix with respect to the 1-Wasserstein distance 63

of barcode. 64

The purpose of DR is to save time of classification and to p- 65

reserve and even improve classification accuracy. In the exper- 66

iments, the appropriate reduced dimension was estimated via 67

PCA. As shown in Figure 3, with the layer of DR, the classifi- 68

cation accuracies of eight data sets on kNN and LR classifier are 69

improved. For instance, noticeable improvement occurs on the 70

data sets of ECG200 and of 2D dynamical system. This mean- 71

s that it is feasible to improve the accuracy of classification in 72

some data sets as well as to obtain dense low-dimensional fea- 73

ture vectors. 74

Table 1. Total time cost of classification using feature vectors with and with-
out DR: Four data sets with a relatively large training and test set are cho-
sen to measure the total time cost of classifying the vectors with reduced
dimension and the vectors with 1024 dimensions on four classifiers. The
time of selecting optimal hyperparameters is included.

Data set Training/test
data

Reduced
dimension

Time cost (s)
with or

without DR
FordB 3636/810 34 102/891

Chlorine
Concentration 467/3840 23 15/143

Distal
PhalanxTW 600/276 29 5/24

Random
Image 800/160 4 5/89

In addition, comparing the proposed method with and with- 75
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Train

PH

PRF

DR

Vectorization

PH

Test
PRF

DR

Vectorization

Classifier

Sample
Sample

Training Data Test Data

Output: pore type

Fig. 4. Pipeline of classifying data set of porous models using feature vectors with the DR technique: an example of nine types of TPMS porous models are
exhibited in the column training data, and an example of test data sampled from a porous model of bone is shown in the column test data.

out DR on kNN classifiers and the method of directly classify-1

ing barcodes using 1-Wasserstein distance matrix, Figure 3 also2

shows the improvement of the proposed method with and with-3

out DR on most of data sets for the extraction of topological4

patterns. On eight data sets, it improves the classification accu-5

racy by using the proposed vectorizing representation and the6

DR layer. On five data sets such as ECG200 and Earthquakes,7

the classification accuracy improves by using vectorizing rep-8

resentation in the classification on kNN classifier. However,9

there exist a few data sets, such as Beef, on which using 1-10

Wasserstein distance matrix on kNN classifier has a better per-11

formance. However, it spent much more time to compute 1-12

Wasserstein distance even through the efficient method of using13

geometry of persistence diagrams proposed in [49].14

Although, as shown by bars in orange and in red in Figure15

2(b), there is some loss of accuracy by using DR technique on16

SVM classifier, the advantage of DR layer is to reduce the train-17

ing time of the classifiers, especially when the data set is large.18

Apparently, it costs much more time to train the classifiers with19

high dimensional vectors. As shown in Table 1, four data sets20

with a large training and test set are chosen to show the time21

saving after DR process. And the time cost was measured on a22

PC with Intel(R) Core(TM) i7-4790 CPU@3.60GHz×8. After23

DR process, the total time cost of classification is reduced by 524

to 15 times.25

6. Application: Classification of Porous Structures26

Porous scaffolds are widely used to engineer various human27

tissues virtually in tissue engineering and biomaterials [39]. To28

extract informative patterns from porous structures for the tasks29

of classification is an important and novel problem for mate-30

rial design. In this section, the generating method of porous31

structures, the details of training, test data and the approach of32

classification are introduced. Finally, the classification accu-33

racy and the time cost of the proposed framework and other 34

state-of-the-art methods are analyzed. 35

6.1. Porous Data Set 36

In this application, a data set of 3D porous models was pro- 37

duced by using TPMS to generate nine types of different porous 38

structures. TPMS is a minimal surface with a mean curvature 39

of zero, with periodicity in each direction of 3D space, which is 40

popular for engineering porous models. 41

The Generation of TPMS in B-Spline Solid: We approx-
imated the TPMS using a periodic nodal surface defined by a
Fourier series [50],

ψ(r) =
∑

k

Akcos[2π(hk · r)/λk − Pk] = C, (14)

where r is the location vector in the Euclidean space, Ak is the 42

amplitude, hk is the kth lattice vector in the reciprocal space, 43

λk is the wavelength of the period, Pk is the phase shift, and C 44

is the threshold constant. And we set C = 0 in this applica- 45

tion. In this application, marching tetrahedra (MT) algorithm 46

is employed to extract the TPMS. In consideration of accura- 47

cy and storage of TPMS, the physical domain is divided into 48

100 × 100 × 100 hexahedrons, and each hexahedron is further 49

divided into 6 tetrahedrons. And then all of intersection trian- 50

gles constitute a mesh approximating the iso-surface. 51

To generate a TPMS in the 3D mesh model, the B-spline sol- 52

id needs to be approximated by hexahedral mesh model. We 53

use a set of sampling points along each parametric direction ac- 54

cording to the preset resolution. All these sampling points are 55

calculated and mapped into the Cartesian space by the trivari- 56

ate B-spline function. These sampling evaluation points con- 57

stitute numerous hexahedron elements to approximately repre- 58

sent the B-spline solid. Every direction of parametric domain 59

is evenly sampled to generate parametric coordinates of eval- 60

uation points. And then, the Cartesian coordinates of the 3D 61

mesh vertices can be calculated by the trivariate B-spline func- 62

tion. The B-spline solid can be approximately represented by 63
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hexahedron elements. Therefore, each hexahedron is further1

divided into 6 tetrahedrons, and the TPMS can be extracted by2

the MT algorithm mentioned above.3

Training Data: The training data are produced by the follow-4

ing operations. First, the physical domain is set to [x, x + 2] ×5

[y, y + 2] × [z, z + 2], and the variables x, y, z are sampled from6

[−1, 1] using random sampling algorithm. Then, with different7

parameters in Equation (14), the discrete hexahedral physical8

domain and the iso-surface ψ(x, y, z) = 0 are determined, and9

the nine types of TPMS can be extracted by the MT algorithm.10

Finally, 100 models with its size 2×2×2 are generated for each11

TPMS type. For each model, 1000 points are randomly sam-12

pled twice to produce a point cloud. In total, 1800 point clouds13

are generated as training data with labels.14

Test Data: As for the test data, five porous models with nine15

types of TPMS are produced, namely, bone (balljoint), isis,16

moai, tooth, and venus (45 models in total). From each of the17

models, three cubes with their size 2 × 2 × 2 are sampled. The18

samples do not contain the boundary of the models. And for19

each cube, three point clouds are randomly sampled with 100020

points. Therefore, 405 point clouds are obtained as test data.21

The labels (TPMS types) keep hidden before classification.22

6.2. Classification and Results23

The pipeline of classifying porous structures is given in Fig-24

ure 4. For each point cloud in both training and test data set,25

the V-R filtration is built on each point cloud in 3D Euclidean26

space to compute a 1-dimensional persistence barcode via PH.27

Then, the vectorizing representation based on PRF is comput-28

ed to obtain the feature vector. And alternatively, the layer of29

DR can be used to obtain the low-dimensional vector. Finally,30

the classifiers are trained with cross-validation and classifica-31

tion accuracy is obtained.32

Table 2. Classification accuracy and time cost on the data set of porous
models: 9-dimensional vectors were obtained through DR, and the hyper-
parameter C of linear SVM was selected to be 0.01 via cross validation. PIs
was obtained by setting the resolution of 10×10 andσ = 10−3 to achieve the
best performance. Time cost for our methods and PIs consists of vector-
ization, training classifier, and testing. Time cost for 1-Wasserstein+kNN
consists of computing distance matrix, training classifier, and testing. And
time cost of kernel methods consists of training and testing.

Methods Accuracy Time Cost
PRF+DR+Linear SVM 81.6% 5.2min/3.0s/0.1s

PRF+Linear SVM 79.4% 5.2min/12.2s/0.2s
PWGK 64.9% 1.5h/0.6h
PSSK 71.6% 2.7h/1.1h
SWK 54.7% 2.5h/1.0h

1-Wasserstein+kNN 72.6% 12.0h/13.5s/0.2s
PIs+kernel SVM 66.4% 4.9min/5.6s/0.1s

As shown in Table 2, feature vectors with DR technique on33

the linear SVM classifier have the best performance. The layer34

of DR helps improve classification accuracy, and 9-dimensional35

vectors are obtained to represent topological patterns of porous36

models. Kernel methods and PIs do not perform well because37

it is likely to be unable to capture detailed topological features 38

but to be disturbed by subtle topological noises in the test data. 39

For time cost, the calculation of the proposed feature vectors is 40

nearly as efficient as the generation of PIs. And we mention 41

that it costs 1.0 min in DR procedure in our method. The kernel 42

methods cost a large mount of time to train the classifier, and 43

it is unacceptable to use the traditional 1-Wasserstein distance 44

on kNN classifier for this classification task. To eliminate the 45

concern that the nice performance of feature vectors with DR 46

occurs because the decomposition based on a few number of 47

Haar basis removes the topological noise of data, 212 Haar basis 48

functions (n = 6 in Equation 6) are adopted, compared with 210
49

functions (n = 5). The classification accuracy is 80.6% on the 50

classifier of linear SVM, which remains high. In general, the 51

results on data sets of porous models show the potential to use 52

PRF to extract topological patterns on data sets with prominent 53

topological features for classification tasks. 54

7. Discussion and Conclusion 55

This paper introduces a novel vectorizing representation of 56

PRF based on Haar basis decomposition on a bounded domain 57

to extract topological patterns for the classification tasks of 58

point clouds, which is one of the issues of interest to the com- 59

puter graphics community. The generated vectorizing represen- 60

tation is proved to have 1-Wasserstein stability, which provides 61

theoretical guarantee of the proposed method to deal with da- 62

ta with noise. Classification experiments in different data set- 63

s show its effectiveness. Meanwhile, it is shown that on the 64

data set of porous models with topological noises, feature vec- 65

tors of PRF perform the best. In the classification pipeline, we 66

employed the DR technique of out-of-sample mapping in su- 67

pervised manifold learning to reduce time of training classfiers 68

and preserve or even improve classification accuracy in prac- 69

tice. It is more effective than the unsupervised DR methods we 70

attempted. One can also attempt other DR methods that match 71

the practical needs for specific data sets. 72

In essence, the proposed vectorizing representation of bar- 73

codes is used for classification tasks of point clouds, and the 74

classification of porous models exhibited in Section 6 is essen- 75

tially a task of 3D point cloud classification. In deep learning, 76

the designed networks, such as PointNet [51], usually have s- 77

tunning performance for point cloud classification, especially 78

in the scenarios involving model semantics. However, the in- 79

terpretability of the networks is still an urgent issue. In ma- 80

chine learning, kernel methods based on persistence diagram- 81

s, such as those we used to compare with the proposed meth- 82

ods, transform the classification of persistence diagrams into a 83

classic non-linear classification problem by designing kernels. 84

These methods have strong generalization ability. But finite- 85

dimensional vectors can not be explicitly given, and it costs a 86

large amount of time in practice to train the classifiers. As a 87

hand-crafted feature extraction, the proposed method captures 88

the informative features of PRF, and can be clearly explained. 89

Meanwhile, the proposed method is shown to have good per- 90

formance on the data sets with significant topological features, 91

such as porous model data set. Unlike kernel methods, the fea- 92
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ture vectors computed by the proposed method are directly in-1

put into classifiers, and it may reduce the generalizing power of2

the classification pipeline.3

For future work, the pore categories on real-world porous4

material data sets are usually unknown. The proposed method5

transforms a point cloud of porous material into a finite-6

dimensional vector containing its topological information, such7

as connectivity and loops. The generated vectors can be used8

as a topological descriptor for material retrieval and classifica-9

tion. It will help researchers find porous materials with similar10

topology in application scenarios.11
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Appendix A: Proof of Theorem 4.130

At first, two inequations in Lp(R2) are proved in Lemma 1.31

Lemma 1. 1. Given f , g ∈ Lp(R2), we have

‖ f + g‖p
p ≤ 2p−1

(
‖ f ‖p

p + ‖g‖p
p

)
, where p ≥ 1. (15)

2. Given f1, f2, · · · , fn ∈ Lp(R2), where n < ∞, it follows that

‖

n∑
i=1

fi‖
p
p ≤ 2(p−1)(n−1)

n∑
i=1

‖ fi‖
p
p, where p ≥ 1. (16)

32

Proof. To show Equation (15), that is,∫
R2
| f + g|p dxdy ≤ 2p−1

(∫
R2
| f |p dxdy +

∫
R2
|g|p dxdy

)
(17)

holds, we show that for p ≥ 1,

| f + g|p ≤ 2p−1(| f |p + |g|p). (18)

It is obvious when p = 1. Then, it is easy to show that y(x) = xp

is convex over R+, i.e., for 0 < x1 ≤ x2, we have y((x1+x2)/2) ≤
(y(x1) + y(x2))/2. Therefore, for p > 1, we have∣∣∣∣∣12 f +

1
2

g
∣∣∣∣∣p ≤ ∣∣∣∣∣12 | f | + 1

2
|g|

∣∣∣∣∣p ≤ 1
2

(| f |p + |g|p) . (19)

It shows that Equation (18) holds. Since f , g ∈ Lp(R2), Equa-33

tion (15) holds by integrating on both sides, which suggests that34

f + g ∈ Lp(R2).35

Moreover, Equation (16) follows by repeatedly using the E-36

quation (15).37

Proof of Theorem 4.1:38

Si 

Si’ 

(a) S i and S
′

i overlap but one
does not contain the other.

Si 

Si’ 

(b) S i contains S
′

i .

Fig. 5. Illustraion of two cases of the relationship between S i and S
′

i .

Proof. For r(s, t), r
′

(s, t) ∈ Lp(Ω), the p-norm of the difference
of r(s, t) and r

′

(s, t) is to be evaluated. It follows that

‖r − r
′

‖p
p =

∫
Ω

∣∣∣∣∣∣∣∣
∑
i∈I

ri −
∑
j∈I′

r
′

j

∣∣∣∣∣∣∣∣
p

dsdt. (20)

ri’s and r
′

j’s are paired according to the matching ϕ. We have

‖r − r
′

‖p
p =

∫
Ω

∣∣∣∣∣∣∣∣
∑
i∈M

ri − r
′

ϕ(i) +
∑
j∈I\M

r j +
∑

k∈I′ \M′
r
′

k

∣∣∣∣∣∣∣∣
p

dsdt

≤

∫
Ω

∑
i∈M

|ri − r
′

ϕ(i)| +
∑
j∈I\M

|r j| +
∑

k∈I′ \M′
|r
′

k |


p

dsdt.

(21)

According to the assumption (2) that the number of intervals in
Bc and Bc

′

is less than L, the total number of pairs and single
elements determined by ϕ is less than 2L, that is, |M| + |I\M| +
|I
′

\M
′

| ≤ 2L. Hence, it follows by Equation (16) in Lemma 1
that

‖r − r
′

‖p
p ≤ 2(p−1)(2L−1)

∑
i∈M

∫
Ω

|ri − r
′

ϕ(i)|
p dsdt

+
∑
j∈I\M

∫
Ω

|r j|
p dsdt +

∑
k∈I′ \M′

∫
Ω

|r
′

k |
p dsdt


= 2(p−1)(2L−1)

∑
i∈M

‖ri − r
′

ϕ(i)‖
p
p +

∑
j∈I\M

‖r j‖
p
p +

∑
k∈I′ \M′

‖r
′

k‖
p
p

 .
(22)

39

Let εi = max{|bi − b
′

ϕ(i)|, |di − d
′

ϕ(i)|} if the interval is paired
by the matching ϕ to achieve the infimum, ε j = ||l j||∞, and εk =

||l
′

k ||∞. Hence, the 1-Wasserstein distance is able to be expressed
by

W1(Bc, Bc
′

) =

∑i∈M

εi +
∑
j∈I\M

ε j +
∑

k∈I′ \M′
εk

 . (23)

The persistence of (bi, di) is di − bi ≥ 0. We denote it as peri. 40

Since W1(Bc, Bc
′

) ≤ 1, it follows by Equation (11) in the paper 41

that ε∗ ≤ 1, where ∗ represents subscripts i, j and k given above. 42

For the intervals paired according to the matching ϕ, the 43

nonzero valued region S i of ri(s, t), induced by (bi, di) ∈ Bc, has 44

different relevant relation with the region S
′

i of r
′

(s, t), induced 45

by (b
′

ϕ(i), d
′

ϕ(i)). In general, three cases are taken into considera- 46

tion. 47

Case 1: S i and S
′

i overlap but one does not contain the other. 48

That is, we have

‖ri − r
′

ϕ(i)‖
p
p =

∫
T1∪T2

|1|p dsdt = Area(T1 ∪ T2), (24)
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where T1 and T2 are two trapezoids formed by (S i ∪ S
′

i)\(S i ∩

S
′

i). Without loss of generality, Area(T1 ∪ T2) is computed ac-
cording to the case shown in Figure 5(a). It is obtained by di-
rectly computing the areas that

Area(T1) =
1
2

[
per

′

ϕ(i) + peri − (d
′

ϕ(i) − di)
]

(b
′

ϕ(i) − bi), (25)

and

Area(T2) =
1
2

[
per

′

ϕ(i) + peri − (b
′

ϕ(i) − bi)
]

(d
′

ϕ(i) − di). (26)

And then we have

Area(T1 ∪ T2) = Area(T1) + Area(T2)

≤
1
2
εi

[
2per

′

ϕ(i) + 2peri − (d
′

ϕ(i) − di) − (b
′

ϕ(i) − bi)
]

≤
1
2
εi

∣∣∣2per
′

ϕ(i) + 2peri + di − d
′

ϕ(i) + bi − b
′

ϕ(i)

∣∣∣
≤

1
2
εi

(
2per

′

ϕ(i) + 2peri + |di − d
′

ϕ(i)| + |bi − b
′

ϕ(i)|
)

≤ (2per + εi) εi,

(27)

where per represents the largest persistence in Bc and Bc
′

, i.e.,
per = max{maxi∈I(di − bi),max j∈I′ (d

′

i − b
′

i)}. Since εi ≤ 1 men-
tioned above,

‖ri − r
′

ϕ(i)‖
p
p ≤ 2per · εi + ε2

i ≤ (2per + 1)εi. (28)

Case 2: For S i and S
′

i , one contains the other.1

Without loss of generality, the case is considered as shown in
Figure 5(b).

‖ri − r
′

ϕ(i)‖
p
p =

∫
S i\S

′

i

|1|p dsdt

= Area(S i\S
′

i ) =
1
2

(per2
i − per

′2
ϕ(i))

=
1
2

(peri + per
′

ϕ(i))(peri − perϕ(i))

≤
1
2

(peri + per
′

ϕ(i))
∣∣∣di − d

′

ϕ(i) + b
′

ϕ(i) − bi

∣∣∣
≤

1
2

(peri + per
′

ϕ(i))
(
|di − d

′

ϕ(i)| + |b
′

ϕ(i) − bi|
)

≤ 2per · εi ≤ (2per + 1)εi.

(29)

where per has the same meaning as Equation (27).2

Case 3: S i and S
′

i do not overlap.3

Notice that in this case we have

max{|bi − b
′

ϕ(i)|, |di − d
′

ϕ(i)|} ≥ max{peri, per
′

ϕ(i)}

≥
di − bi

2
+

d
′

ϕ(i) − b
′

ϕ(i)

2
,

(30)

i.e.,
||li − l

′

ϕ(i)||∞ ≥ ||li||∞ + ||l
′

ϕ(i)||∞, (31)

which means that it is better if li and l
′

ϕ(i) are not paired. There-4

fore, case 3 does not happen if the matching ϕ is the one to5

reach the infimum.6

For the intervals not paired via the matching ϕ, it follows that∫
Ω

|r∗|p dsdt =

∫
S ∗
|1|p dsdt =

1
2

per2
∗ , (32)

As defined in Equation (9), it follows by per∗ = 2ε∗ that∫
Ω

|r∗|p dsdt = per∗ · ε∗ ≤ (2per + 1)ε∗, (33)

where ∗ represents the subscripts j ∈ I\M and k ∈ I
′

\M
′

in the 7

corresponding situation, and per is the largest persistence in the 8

barcodes. 9

Eventually, it follows by Equation (22) that

‖r − r
′

‖p
p ≤ 2(p−1)(2L−1)

∑
i∈M

‖ri − r
′

ϕ(i)‖
p
p +

∑
j∈I\M

‖r j‖
p
p +

∑
k∈I′ \M′

‖r
′

k‖
p
p


≤ 2(p−1)(2L−1)(2per + 1)

∑
i∈M

εi +
∑
j∈I\M

ε j +
∑

k∈I′ \M′
εk


= 2(p−1)(2L−1)(2per + 1)W1(Bc, Bc

′

).
(34)

Because the domain is restricted on [0, B]×[0, B], in a barcode, 10

it is equivalent to consider the intervals satisfying 0 ≤ bi ≤ di ≤ 11

B, to truncate the intervals in which bi < B and di > B into 12

(bi, B), and to neglect the intervals in which bi > B. Whence, it 13

is equivalent to assume that per = maxi∈I(di − bi) ≤ B for any 14

barcode on the domain, which makes Equation (11) hold. 15

Appendix B: Proof of Corollary 1 16

Proof. Let rupper represent the function restricting r̃ on the do-
main above the diagonal and rdown represent the function below
the diagonal. Then the equation r̃ = rupper + rdown holds. Be-
cause of the definition of extended PRF given in Equation (4)
and Equation (5), we have

‖r − r
′

‖p = ‖rupper − r
′

upper‖p = ‖rdown − r
′

down‖p. (35)

Therefore, it follows by Equation (15) that

‖̃r − r̃
′

‖p
p = ‖(rupper − r

′

upper) + (rdown − r
′

down)‖p
p ≤ 2p‖r − r

′

‖p
p. (36)

By using the result in Theorem 4.1, Equation (12) holds. 17

Appendix C: Proof of Theorem 4.2 18

Before proving the final stability theorem of the feature vec- 19

tors, a lemma is provided as follows. 20

Lemma 2. For 2D Haar basis {hari(s, t)}∞i=1 and f ∈ L2(Ω), the
Parseval identity [52] holds, that is,

‖ f ‖22 =

∞∑
i=1

〈 f , hari〉
2 =

∞∑
i=1

λ2
i . (37)

Proof. It follows the fact that Haar basis is a complete and or- 21

thonormal basis in L2(Ω) [40]. 22

Eventually, we give the proof of Theorem 4.2. 23

Proof. It is left to show that ‖v − v
′

‖22 ≤ ‖̃r − r̃
′

‖22. Accord-
ing to the definition of feature vector given in Equation (8) and
Equation 37 in Lemma 2, we have

‖v − v
′

‖22 =

N2∑
i=1

(λi − λ
′

i )
2 ≤ ‖̃r − r̃

′

‖22. (38)

Then, it follows by Equation (12) that when p = 2, Equation 24

(13) holds. 25
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